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Abstract
The rate ν1→3 of one phonon decaying into three is calculated in the momentum
range where one phonon decaying into two is forbidden in liquid 4He. Exact and
useful approximate expressions for the rate ν1→3 are obtained. Its dependence
on all parameters, and the physical reasons for these dependences, are analysed.
It is shown that processes where one phonon scatters into three, and three
phonons scatter to one phonon, rapidly establishes equilibrium in anisotropic
and isotropic phonon systems. This shows that the momentum range, where one
to three phonon processes are allowed, should be included in the subsystem of
low-energy phonons where equilibrium occurs quickly, and not in the subsystem
of high-energy phonons where spontaneous decay processes are forbidden and
equilibrium occurs slowly.

1. Introduction

An important unresolved question concerning phonons in liquid 4He, is ‘what is the relaxation
rate of phonons with energy in the range 8.94 K � ε/kB � 10 K’. This is the energy range
above the energy where fast three-phonon processes, 3pp or 1 → 2, are allowed, and below
the energy where the fastest rate is the relatively slow four-phonon process, 4pp or 2 → 2.
In this range phonons can spontaneously decay into three or more phonons, and above this
range no spontaneous decay is allowed. Experiments have clearly shown that a short pulse of
phonons created in liquid 4He separates, in a few tens of microseconds, into two groups, one
comprises low-energy phonons, with typical energy 2 K, and the other high-energy phonons
with energy �10 K. If the relaxation rate in the range 8.94 K � ε/kB � 10 K is high then
these phonons must be included in the low-energy phonon group, but if the relaxation rate is
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slow then they should be included in the high-energy phonon group. Where they are included
has large consequences for the number of high-energy phonons with energy around 10 K, as
well as for the thermodynamics of anisotropic phonon systems.

Phonon–phonon interactions in superfluid helium are crucially dependent on the relation
between phonon energy ε and momentum p, which can be written as

ε = cp(1 + ψ(p)). (1)

Here c = 238 m s−1 is sound velocity and ψ(p) is a function which describes the deviation of
a spectrum from linearity. Although ψ(p) is small (|ψ(p)| � 1), it completely determines the
mechanisms of phonon interactions.

When p < pc (cpc/kB = 10 K at zero pressure), the function ψ > 0, and the laws
of conservation of energy and momentum allow spontaneous decay processes. The fastest of
these processes is the three-phonon process, 3pp or 1 → 2, when one phonon decays into two
or two interacting phonons combine into one. The 3pp is allowed up to cp/kB � 8.94 K. When
p > pc the function ψ < 0. In this case the dispersion is normal and processes of spontaneous
phonon decay are forbidden by the laws of conservation of energy and momentum. Then the
fastest processes are four-phonon processes, 4pp or 2 → 2, when there are two phonons in both
the initial and the final states.

In the experiments [1] a unique phenomenon was observed: when one short current pulse
was given to the heater, two pulses, well separated in time, were detected. The first was formed
by low-energy phonons (l-phonons), and the second was formed by high-energy phonons (h-
phonons). From the subsequent experiments (see [2, 3]), it was unambiguously demonstrated
that the h-phonon pulse had not been created in the heater but was created by the l-phonon
pulse during its motion from the heater to the detector in He II. The theory of this surprising
phenomenon, when a rather cold l-phonon pulse with temperature close to Tp ≈ 1 K creates
high-energy phonons with energy ε � 10 K was given in [4, 5].

This theory was based on the fact that the rate of three-phonon processes ν1→2 is some
orders of magnitude higher than the rate of four-phonon processes ν2→2. The strong inequality
ν1→2 � ν2→2 allowed us to consider that the phonons form two subsystems, one of low-energy
phonons in which the relaxation occurs very quickly relative to all other times in the problem,
i.e. τ1→3 � tp � tprop where tp and tprop are the pulse length and propagation time respectively,
and another of high-energy phonons in which the relaxation time τ2→2 is tp < τ2→2 � tprop.
In [4, 5] it was supposed that a subsystem of low-energy phonons is formed by phonons with
p < pc, and a subsystem of high-energy phonons is formed by phonons with p > pc.

It was shown in [6–10], that three-phonon processes are not allowed by conservation laws
all the way up to momentum pc, where the function ψ vanishes, but only up to a momentum√

4/5 pc after which they are forbidden by the laws of conservation of energy and momentum.
However, in the momentum range from

√
4/5 pc to pc processes of one phonon decaying into

a greater number of phonons are still allowed. So at zero pressure, one phonon can decay into
three up to a momentum p̃ = cp/kB = 9.49 K, decay into four is allowed up to 9.7 K, and into
five up to 9.81 K and so on up to p̃c = 10 K.

Therefore calculation of the rates of these processes will enable us to decide into which
subsystem this region of momentum should be assigned. So if the rate of these processes
is close to the rate of three-phonon processes this region of momenta should be assigned to
l-phonons and if it appears less than ν2→2 then it should be assigned to h-phonons and the
boundary of the subsystems is at the point

√
4/5 pc. The answer to this question is very

important as, according to [11], the rate of h-phonon creation with a given momentum, in
an l-phonon pulse, is very sensitive to the numerical value of the momentum at the boundary
between the l- and h-phonons.
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In this paper one of the processes which does not conserve phonon number is investigated:
it is the process of one phonon decaying into three. The rate of decay is calculated when
there are no thermal phonons; this is the spontaneous decay rate. It is also calculated at
finite temperature when there is additional stimulated decay. This is done for both isotropic
distribution of thermal phonons and for strongly anisotropic phonon distributions. Exact and
useful approximate equations for the decay rate are derived. The question of the numerical
value of momentum, which delimits phonons of superfluid helium into l- and h-phonon
subsystems, is considered and compared to experimental results.

2. The main characteristics of processes of one phonon decaying into three

The dispersion relation (1) is very important when studying the processes of one phonon
decaying into three. For the calculations we need an analytical definition of the function
ψ(p). Here and below we use the simple analytical approximation which was obtained in [10]
from [12] and is valid in the region of momentum p � pc which is of interest to us:

ψ(p) = 4ψmax
p2

p2
c

(
1 − p2

p2
c

)
, (2)

where ψmax = 0.046 is the maximum value of the function ψ(p) reached when p = pc/
√

2.
All threshold momentum values are calculated with approximation (2).

The maximum value of momentum pmax up to which processes of one phonon decaying
into three are allowed can be obtained from the momentum and energy conservation laws

p1 = p2 + p3 + p4, (3)

ε1 = ε2 + ε3 + ε4. (4)

Restrictions on the momenta of interacting phonons are found from the relation between angles
of phonons with momenta p1, p2 and p3, p4. From equations (1), (3) and (4) we have

ζ12 = (2p1 − 2p2 + φ) φ − 2p3 p4ζ34

2p1 p2
, (5)

where φ = f1 − f2 − f3 − f4, and fi = piψ(pi). Also ζi j = 1 − cos θi j where θi j is the angle
between phonons with momenta pi and p j .

Putting the values of ζ34 and ζ12 equal to zero in (5), we get the equation defining the
boundaries of the regions in which processes of one phonon decaying into three can take place.
Substituting (2) in (5) with ζ34 = 0 and ζ12 = 0 we have, in the first approximation of small ψ ,
an equation in the fourth power of p3(p1, p2). Its solutions are

p3±(p1, p2) = 1

10

(
5p1 − 5p2 ± √

5
√

−15p2
1 + 10p1 p2 − 15p2

2 + 12p2
c

)
,

p3(p1, p2) = p1.

(6)

The fourth solution p3(p1, p2) = −p2 should be omitted as it does not satisfy the condition
p3 � 0.

The equation (6) defines the boundaries of the region in which processes of one phonon
decaying into three can take place. From the positivity of the radicand in (6) the restriction on
the momentum range of the second phonon can be obtained:

max(0, p2−) < p2 < min(p1, p2+), (7)

where

p2± (p1) = 1
3

(
p1 ± 2

√
2
√

p2
max − p2

1

)
, pmax =

√
9

10 pc. (8)
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It follows from equations (3)–(8) that the values of momenta of phonons participating in
processes 1 → 3 can lie in the range (see also [13, 14])

0 < p2,3,4 <

√
3
5 pc = pmin, (9)

0 < p1 < pmax. (10)

At the saturated vapour pressure we have p̃min = 7.75 K and p̃max = 9.49 K.
We note that the processes of one phonon decaying into three in the region of momenta√

4
5 pc < p1 <

√
9
10 pc, (11)

only involve small angles: from equations (3)–(5), we see that the angle between the momentum
of the initial phonon and the momentum of any of the created phonons does not exceed 23◦.

The interaction of phonons in superfluid helium is described by the Landau Hamiltonian
which we write as (see, for example, [15–17])

Ĥph = Ĥ0 + V̂3 + V̂4. (12)

Here Ĥ0 is the Hamiltonian of noninteracting phonons and terms V̂3 and V̂4 describe the
interaction of phonons, caused by the third and fourth orders of small deviations of the system
from equilibrium respectively.

We can use the hydrodynamic Hamiltonian (12) for phonons with energy ε/kB ≈ 10 K
because the de Broglie wavelength of an atom in the liquid 4He is larger than the atomic spacing.
The application of the hydrodynamic approach to small wavelengths was discussed in [18].
In this approach the delocalization of the atoms in the quantum liquid allows us to use the
relation (1) with constant c, for phonons of any energy.

The probability density for the process of one phonon decaying into three can be written
as

W (p1|p2p3p4 ) = 2π

h̄
V 2|Hfi|2 1

(2π h̄)6
. (13)

Here V is the volume of the system and Hfi is the amplitude of the process in which one phonon
in the initial state decays into three phonons in the final state. This is obtained in second order
perturbation theory on V̂3 and in first order perturbation theory on V̂4, with the help of standard
procedures (see, for example, [11, 15–17, 19, 20]) i.e.

Hfi =
∑

Q

〈p2,p3,p4|V̂3|Q〉〈Q|V̂3|p1〉
Ei − EQ

+ 〈p2,p3,p4|V̂4|p1〉, (14)

where Q is an intermediate state with energy EQ and Ei is the energy of the initial state.
When a phonon with momentum p1 decays into three having momenta p2, p3, p4, six

intermediate states I–VI in which phonons have momenta

I, p1 − p2,p2; II,p1 − p3,p3; III, p1 − p4,p4;
IV, p1,p3,p4,−p3 − p4; V, p1,p2,p4,−p2 − p4; VI, p1,p2,p3,−p2 − p3

(15)

are possible. From equations (14) and (15) we have

Hfi = δp1;p2+p3+p4

√
p1 p2 p3 p4

8ρV
M. (16)

Here ρ = 145 kg m−3 is a density of He II,

M = M (2)
12 + M (2)

13 + M (2)
14 + M (4)

12 + M (4)
13 + M (4)

14 + M4 (17)

is the matrix element which consists of seven terms, six of which correspond to six intermediate
states (15), and the seventh is defined by first-order perturbation theory on V̂4. The superscripts
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show the number of phonons in the intermediate state. From the explicit definitions of the terms
in the Hamiltonian, [15], we derive the matrix elements as

M (2)
12 = ε1−2

ε1 − ε2 − ε1−2
(2u − 1 + n3n4 + n3n3+4 + n4n3+4)

× (2u − 1 + n1n2 + n1n1−2 + n2n1−2) , (18)

M (4)
12 = − ε1−2

ε1 − ε2 + ε1−2
(2u − 1 + n3n4 − n3n3+4 − n4n3+4)

× (2u − 1 + n1n2 − n1n1−2 − n2n1−2) , (19)

M4 = 4
{
(u − 1)2 +w

}
, (20)

where ni = pi

pi
, εi = ε(pi), εi− j = ε(|pi − p j |), u = ρ

c
∂c
∂ρ

= 2.84 is the Grüneisen constant

and w = ρ2

c
∂2c
∂ρ2 = 0.188. Other terms of (17), could be obtained from (18) and (19) by the

replacement of corresponding subscripts. We notice that the first three terms of expression (17)
are resonant: when ψ(p) = 0 their denominators can vanish, leading to an essential divergence
of the matrix elements. These three terms give the main contribution to expression (17). The
remaining terms give approximately the same small contribution.

3. The kinetic equation for the processes of one phonon decaying into three phonons

The kinetic equation describing the change of the distribution function n1 ≡ n(p1) of a phonon
with momentum p1 due to processes of one phonon decaying into three can be written as

dn1

dt
= 1

3!
∫

W (p1|p2p3p4){n2n3n4(1 + n1)− n1(1 + n2)(1 + n3)(1 + n4)}
× δ(ε1 − ε2 − ε3 − ε4)δ(p1 − p2 − p3 − p4) d3 p2 d3 p3 d3 p4

+ 1
2

∫
W (p4|p1p2p3){n4(1 + n1)(1 + n2)(1 + n3)− n1n2n3(1 + n4)}

× δ(ε4 − ε1 − ε2 − ε3)δ(p4 − p1 − p2 − p3) d3 p2 d3 p3 d3 p4. (21)

Here the first term corresponds to a phonon with a momentum p1 decaying into three phonons
and the inverse process and the second term corresponds a phonon with momentum p1

combining with other phonons and process inverse to it.
In the region of momentum (11) which is of interest to us the second term in the kinetic

equation vanishes due to the laws of conservation of energy and momentum. In this case the
kinetic equation can be written as

dn1

dt
= Nb − Nd. (22)

Here

Nb,d = 1

3!
∫

W (p1|p2p3p4)nb,dδ
(
ε∑)

δ
(
p∑)

d3 p2 d3 p3 d3 p4, (23)

nb = n2n3n4 (1 + n1) , nd = n1(1 + n2)(1 + n3)(1 + n4), (24)

ε∑ = ε1 − ε2 − ε3 − ε4, p∑ = p1 − p2 − p3 − p4. (25)

As shown in [10, 21] when p1 <
√

4/5 pc, fast three-phonon processes form a local-
equilibrium distribution function which can be written as

n(0) (pl) =
{

exp

(
εl − pl u

kBT

)
− 1

}−1

, (26)
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where

u = Nc(1 − χ) (27)

is a drift velocity, N is a unit vector directed along the total momentum of phonon system,
which defines the anisotropy axis of phonon system and χ is the anisotropy parameter.

In isotropic phonon systems χ = 1. In the case corresponding to experiments [1–3],
phonon pulses are strongly anisotropic phonon systems with χ � 1.

In calculations it will be more convenient to use the expression

n(0)(pl, ζl) =
{

exp

(
cpl

kBT
(ψl + χ + ζl − ζlχ)

)
− 1

}−1

, (28)

which is obtained by substitution of (1) and (27) into (26). Here ζl = 1 − pl N
pl

.
Taking into account (23) and (26) Nb and Nd can be written as

Nd = n1ν1→3, (29)

Nb = exp

(
−ε1 − p1u

kBT

)
(1 + n1)ν1→3, (30)

where

ν1→3 = 1

3!
∫

W (p1|p2p3p4)
(

1 + n(0)2

) (
1 + n(0)3

) (
1 + n(0)4

)

× δ
(
ε∑)

δ
(
p∑)

d3 p2 d3 p3 d3 p4. (31)

So in order to find Nb and Nd, which are in the kinetic equation, it is necessary to find
ν1→3.

For small deviations from the equilibrium state of phonons with momentum p1, the
distribution functions are equal to

n1 = n(0)1 + δn, n2 = n(0)2 , n3 = n(0)3 , n4 = n(0)4 . (32)

Substituting (32) into (22) taking into account (31), we get

dδn

dt
= − δn

τ1→3
, (33)

where

τ1→3 = 1 + n(0)1

ν1→3
(34)

is a typical time of establishment of equilibrium in the phonon system, caused by processes
1 → 3.

In the region of momentum (11) considered by us the value of n(0)1 is small. Thus, as
follows from (34), the rate ν1→3 actually coincides with the relaxation rate of a system due to
one phonon decaying into three and combining three phonons into one.

4. The rate of processes for one phonon decaying into three phonons

The general expression for the rate ν1→3 can be obtained by rewriting the expression (31),
taking into account equations (13)–(16), in spherical coordinates

ν1→3 = p1

3 × 212π5h̄7ρ2

∫
M2δ

(
ε∑)

δ
(
p∑) (

1 + n(0)2

) (
1 + n(0)3

) (
1 + n(0)4

)

× p3
2 p3

3 p3
4 dp2 dϕ2 dζ2 dp3 dϕ3 dζ3 dp4 dϕ4 dζ4, (35)

where ζi = 1 − piN
pi

.
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Without any restriction on generality we can choose the angle ϕ1 as the computing origin
of angle ϕ. Four δ-functions in the integrand of equation (35) allow us to make integration over
ϕ3, ϕ4, ζ4, p4. As a result we have

ν1→3 = N p1

∫ {
M2

+ + M2
−
} (

1 + n(0)2

) (
1 + n(0)3

) (
1 + n(0)4

)

× p3
2 p3

3 p2
4√

R
dp2 dp3 dζ2 dζ3 dϕ2, (36)

where

N = 1

3 × 211π5h̄7ρ2c
, (37)

M± = M
(

cos ϕ3 = cos ϕ(±)3 , cos ϕ4 = cos ϕ(±)4

)
, (38)

cos ϕ(±)3 = (p1⊥ − p2⊥ cos ϕ2)
(
A + p2

3⊥ − p2
4⊥

) ∓ p2⊥ sinϕ2

√
R

2Ap3⊥
, (39)

cos ϕ(±)4 = (p1⊥ − p2⊥ cos ϕ2)
(
A − p2

3⊥ + p2
4⊥

) ± p2⊥ sinϕ2

√
R

2Ap4⊥
(40)

p4 = p1 − p2 − p3 + φ, ζ4 = p1ζ1 − p2ζ2 − p3ζ3 + φ

p4
, (41)

A = p2
1⊥ + p2

2⊥ − 2p1⊥ p2⊥ cos ϕ2, pi⊥ = pi

√
2ζi − ζ 2

i , (42)

R = 4p2
3⊥ p2

4⊥ − (
p2

1⊥ + p2
2⊥ − p2

3⊥ − p2
4⊥ − 2p1⊥ p2⊥ cos ϕ2

)2
. (43)

The case of ζ1 = 0 is important, as then the expression (36) becomes much simpler
because, firstly, the dependence of the matrix element on ϕ3 and ϕ4 vanishes and, secondly,
the dependence of the integrand expression on ϕ2 disappears and so the integration over ϕ2 can
be easily made analytically. Taking this into account we have

ν
θ1=0
1→3 = 2πN p1

∫ (
Mθ1=0

)2
(

1 + n(0)2

) (
1 + n(0)3

) (
1 + n(0)4

)
√
(ζ3+ − ζ3) (ζ3 − ζ3−)

×
(

1 + 2p1 p2ζ2

(p1 − p2)
2

)− 1
2 p3

2 p2
3 p2

4

p1 − p2
dp2 dp3 dζ2 dζ3, (44)

where

Mθ1=0 ≡ M+ (ζ1 = 0) = M− (ζ1 = 0) , (45)

ζ3± = b ± 8p1 p2
2 p3

√
ζ2 (2 − ζ2) (ζ2 − ζ2 min) (ζ2 max − ζ2)

2|a| . (46)

Here

b = −8p1 p2
2 p3ζ

2
2 + 4p2 p3

(
2p2 p3 − 2p1 p4 + 2p1φ + 2p4φ − φ2

)
ζ2

+ 4p3φ(p1 − p2)(2p4 − φ), (47)

a = −4p2
3(p1 − p2)

2

(
1 + 2p1 p2ζ2

(p1 − p2)2

)
, (48)

ζ2 min = − (2p3 − φ)(2p4 − φ)

2p1 p2
, (49)

ζ2 max = (2p1 − 2p2 + φ)φ

2p1 p2
. (50)
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The expression (44) gives the maximum value of (36), the rate of decay of a phonon which
moves along the anisotropy axis of the system, i.e. at θ1 = 0. It corresponds to the maximum
stimulation of the small-angle process 1 → 3 by the anisotropic phonon system. This due
to the integrand expression (44) containing the functions n(0)2 , n(0)3 , n(0)4 , which stimulate the
decay, so giving the maximum decay rate.

At χ � 1, with increasing angle θ1, the rate ν1→3(θ1) decreases; it tends to the minimal
value which corresponds to the rate of phonon decay in a phonon vacuum, when there is no
stimulation. The minimum value can be obtained from expression (44) in which the distribution
functions n(0)2 , n(0)3 and n(0)4 are put to zero.

It is easy to estimate the difference between the maximum and minimum values of the
rate ν1→3: it follows from simple estimations that the typical numerical values of distribution
functions contained in the integrand expression (44) are about 0.1 in the conditions of the
experiments [1–3] at θ1 = 0. In this case the maximum value of νθ1=0

1→3 is greater than the
minimum by 1.3 times (see figure 2).

The expression (44) also gives the value of the rate of decay 1 → 3 in isotropic phonon
systems; this obtained by putting the parameter χ = 1 in (28).

5. An approximate expression for the rate ν1→3

It is impossible to further integrate (44) exactly analytically. We will derive an approximation
of the rate ν1→3 from (44), which will allow us to find the dependences of the rate on the
relevant parameters. For this we shall retain only the first three terms of (17), which, as was
discussed above, are resonant. Then we can replace Mθ1=0 with M ′ in (44), which gives

M ′ = 4(u + 1)2 (m2 + m3 + m4) = 4(u + 1)2m. (51)

Here

m2 = − (p1 − p2)
2

p1 p2

1

ζ2 − κ2
, κ2 = p1 − p2

p1 p2
( f1 − f2 − f1−2), (52)

m3 = − (p1 − p3)
2

p1 p3

1

ζ3 − κ3
, κ3 = p1 − p3

p1 p3
( f1 − f3 − f1−3), (53)

m4 = − (p1 − p4)
2

p1 p4

1

ζ4 − κ4
, κ4 = p1 − p4

p1 p4
( f1 − f4 − f1−4), (54)

where κi are functions depending on a dispersion, and fi− j = f (pi − p j).
The integration in (44) can be made if we omit, in the integrand expression, distribution

functions which are small, and replace weakly changing functions of momenta and angles by
their typical values. As a result we have

ν1→3 = N ′m̄2
(

p2,3,4 = p1

3

)
φ

(
p2,3,4 = p1

3

)

× (
p2

max − p2
1

) (
12.5p6

1 − 13.5p4
1 p2

c + 2.43p6
c

)
. (55)

Here

N ′ = 6.69 × 10−7 (u + 1)4

h̄7ρ2c
, (56)

m̄ = m

(
ζ2 = 0, ζ3 = p4φ

2p3(p1 − p2)
, ζ4 = (p1 + p3 − p2) φ

2p4(p1 − p2)

)
. (57)
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Figure 1. Momentum dependence of the rate ν1→3 of one phonon decaying into three at θ1 = 0,
calculated with a help of equation (44) (solid curve) at θ1 = 180◦, with the help of equation (36)
(dashed curve) and ν1→3 with the help of equation (58) (dotted curve). All calculations were made
with χ = 0.02 and T = 0.041.

Figure 2. Angular dependence of the rate ν1→3 of one phonon decaying into three for p̃1 = 9 K,
χ = 0.02 and different values of temperature T such as 0.016 K, 0.021 K, 0.025 K, 0.030 K,
0.036 K, 0.041 K (curves 1–6 respectively).

The result (55) can be approximated with a simple expression which nevertheless repre-
sents the dependence of the rate on momentum p1 and the parameters of superfluid helium

ν1→3 = (3.74 × 10−5)
(u + 1)4 p5

c

cψmaxρ2h̄7

(
p2

max − p2
1

)2
. (58)

It follows from relation (58), that the factor (p2
max − p2

1)
2 determines the rapidity of the

rate going to zero. Expression (58) does not retain the dependence on temperature because
we omitted the distribution functions, which determine the temperature dependence of the rate
ν1→3, before the integration.

The dependences of ν1→3 on p1, ζ1 and T can be obtained from numerical integration of
expression (36).

In figure 1 the momentum dependence of the rate ν1→3 of one phonon decaying into three
is shown for θ1 = 0, calculated with equation (44) (solid curve), for θ1 = 180◦ calculated
with equation (36) (dotted curve) and ν1→3 calculated with equation (58) (dashed curve). The
calculations were made with the fixed values of T = 0.041 K and χ = 0.02 which correspond
to the conditions of experiments [1–3]. One can see that the rate rapidly decreases to zero
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Figure 3. Momentum dependences of the rate of three-phonon processes 1 → 2 (curve 1),
processes of one phonon decaying into three 1 → 3 (curve 2) and four-phonon processes 2 → 2
(curve 3). Calculations were made with θ1 = 0, χ = 0.02 and T = 0.041.

at cp1/kB = 9.49 K, this is because at large values of momentum, processes of one phonon
decaying into three are forbidden by the conservation laws. From equation (58) we see that the
rate goes to zero as (p2

max − p2
1)

2.
In figure 2 the angular dependence of the rate for one phonon decaying into three, at

p̃1 = 9 K, is shown for different temperatures. The rates are maximal at θ1 = 0. This is
due to stimulated decay caused by the thermal phonons in the anisotropic system of phonons.
With increasing angle, the rate becomes constant; this corresponds to spontaneous phonon
decay, when phonons ‘does not feel’ the presence of the anisotropic system. When θ1 = 0
we see that on increasing the temperature from 0.016 K up to 0.041 K, the rate increases
approximately by 25%, and at greater values of θ1 the dependence on temperature disappears.
The temperature dependence of the rate at θ1 = 0 is defined by the functions n(0)i in the
integrand of expression (44). At θ1 � 40◦ the dependence of the rate on temperature disappears
as the phonon ‘does not feel’ the presence of the anisotropic system when the angle is large.

The numerical calculations of the rate for the isotropic case with T = 1 K only differs
from that for the anisotropic case, when θ1 = 0 and with typical values of T = 0.041 K
and χ = 0.02, by only a few per cent. That is why it is not shown here. The temperature
dependence for the isotropic case is the same as for the anisotropic case with θ1 = 0.

As was stated in the introduction, the important question is where should we delimitate the
l- and h-phonon subsystems. To answer this question we consider figure 3 in which are shown
the momentum dependences of the rates for three-phonon processes (curve 1) (see [10]), the
rates for one phonon decaying into three (curve 2) and the rates for four-phonon processes
which create high-energy phonons with momenta p > 10 K (curve 3) (see [11]). Calculations
were made with θ1 = 0, χ = 0.02 and T = 0.041. From figure 3 it can be seen that the rates
of three-phonon processes (1 → 2) and processes of one phonon decaying into three (1 → 3)
are comparable and are much greater than the rates of four-phonon (2 → 2) processes. This
indicates that the range of momenta from 8.94 to 9.49 K should be included in the subsystem
of low-energy phonons, in which equilibrium occurs rather quickly, and not in the region of
high-energy phonons (p > pc), where spontaneous decay processes are forbidden and the
equilibrium is attained slowly.

There remains the question of which subsystem phonons with momenta from 9.49 to 10 K
should they be assigned to. The numerical value of ν2→2(ph), which describes the processes
of creation and decay of high-energy phonons with momentum ph due to processes 2 → 2 is
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Figure 4. The l- and h-phonon signals due to a heater pulse at t = 0; the l-phonon signal starts at
73.6 μs and decays in a few μs, and the h-phonon signal starts at the time of the l-phonon signal and
peaks at 94.1 μs. The signal at long times is due to heat leaking out of the glass heater–substrate.
This curve is a detail from figure 1 in [3]. The phonon signal at 92.8 μs is due to 10.0 K phonons
that have travelled from the heater to the detector at 189 m s−1.

very sensitive to the numerical value of the momentum pd, which separates l- and h-phonon
subsystems. This is due to the strong anisotropy of phonon systems and the restrictions on
angles between the interacting phonons (see [11]). As a result, the process of creation of
an h-phonon from two interacting l-phonons is only effective when the momentum of one
of the interacting phonons is close to pd (pd <∼ pc). For example, an l-phonon pulse
with typical experimental values of χ = 0.02 and T = 0.041, [1–3], when p̃d = 10.0 K,
the rate ν2→2(10.01 K) = 1.74 × 106 s−1, and exponentially decreases with increasing
ph so that ν2→2(10.5 K) = 1.77 × 104 s−1 and ν2→2(11 K) = 1.01 × 102 s−1. When
p̃d = 9.49 K the rate ν2→2(9.5 K) = 3.6 × 106 s−1 and ν2→2(10 K) = 5.91 × 104 s−1.
When p̃d = 8.94 K the rate ν2→2(8.95 K) = 1.04 × 107 s−1, ν2→2(9.5 K) = 2.13 × 105 s−1

and ν2→2(10 K) = 3.23 × 103 s−1. From these numerical values we see that the dependence of
ν1 on ph shifts to smaller momenta, in a parallel way, with decreasing pd.

The calculation of the rates of decay in the range of momenta from 9.49 to 10 K is very
complicated as the order of integrals strongly increases with the number of phonons in the
process. It is possible only to argue that the rates of decay are sufficiently rapid that the time
to establish equilibrium in the region from 9.49 K up to 10 K will be less than in the region of
p > pc where spontaneous decay processes are forbidden. We also note that in this momentum
region, the rate of four-phonon processes ν2→2 will be greater than in the region p̃1 > 10 K.
This leads to the conclusion that the total relaxation rate, which is the sum of the rates of four-
phonon processes and decay processes, will surely be greater in the region from 9.49 to 10 K
than in the region p̃1 > 10 K.

This conclusion is supported by experiments. In figure 4 we show a phonon pulse after
propagating 17.54 mm in liquid 4He at 50 mK; this is a detail from figure 1 in [3]. The narrow l-
phonons clearly arrive before the dispersed h-phonons. The propagation distance is found from
the start time of the l-phonon signal and the velocity of sound (238.8 m s−1). The h-phonon
pulse shape is broad for two reasons; the first is that phonons are created in the liquid helium
over many millimetres from the heater, and secondly because phonons with momentum higher
than cp/kB = 10.0 K are created albeit with diminishing probability as momentum increases.
The h-phonons that arrive earlier than the peak are predominantly phonons with momentum
around 10 K but created at different points in the liquid, and the h-phonons that arrive after the
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peak are higher-momentum phonons and so have a lower group velocity. It should be noted that
the signal which arrives later than ≈100 μs is not wholly due to h-phonons but is mainly caused
by heat slowly leaking from the glass heater–substrate after the heater pulse. The momentum
of a phonon created near the heater and travelling for 100 μs is cp/kB = 10.75 K; we believe
that there are few phonons with cp/kB > 11 K.

The group velocity of the h-phonons at the peak is 186.4 m s−1 using the fact that the
highest creation rate of h-phonons is near the heater [22, 23]. From Stirling’s neutron scattering
data [12] we derive the group velocity as a function of momentum and find that 186.4 m s−1

corresponds to cp/kB = 10.15 K. This is sufficiently close to cp/kB = 10.0 K, with group
velocity 189 m s−1, to confirm that the boundary is at p̃c = 10.0 K.

6. Conclusion

In this paper the processes of one phonon decaying into three, both in anisotropic and isotropic
phonon systems of superfluid helium, were investigated. The restrictions on the momentum of
phonons which can participate in these processes were found, and the probability density of
transition caused by the above-mentioned process was calculated (13)–(20).

The general expression for the rate ν1→3 of one phonon decaying into three was found (36).
Together with (29), (30) and (34), ν1→3 describes the process of establishing equilibrium in
anisotropic and isotropic phonon systems in the energy range where processes of one phonon
decaying into two are forbidden.

The rate ν1→3 in isotropic phonon systems, given by expression (44), was obtained from
the general expression (36), and also the maximum and minimum values of the rate ν1→3 in
anisotropic phonon systems. Starting from the expression (44) a useful approximation was
obtained which is given in (58). This shows the explicit dependence of the rate ν1→3 on
momentum (see figures 1 and 2). The dependence of the rate ν1→3 on all parameters was
found from expressions (36), (44) and (58); the physical reasons for these dependences were
discussed.

The rate ν1→3 is high (see figure 3), so equilibrium is rapidly established in the phonon
system. This means that phonons with momenta up to 9.49 K should be considered as the
low-energy phonon subsystem, in which equilibrium occurs quickly, in contrast to the region
of high-energy phonons (p � pc) where decay processes are forbidden and equilibrium is
attained slowly.

We further argued that in the momentum range from 9.49 to 10.0 K that the total relaxation
rate is necessarily higher than in the range above 10 K. Hence we conclude that the boundary
between the l- and h-phonons is at momentum p = pc. So at zero pressure, phonons with
momenta cp/kB � 10 K are l-phonons and those with momenta cp/kB > 10 K are h-
phonons. At higher pressures we must use the pressure dependent values of pc, as was found
experimentally [2]. This boundary has been used in calculations in [4, 5, 11]. This theoretical
conclusion is supported by experiments [2, 3].
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